Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 897
1.
Angew Chem Int Ed Engl ; : e202405222, 2024 May 10.
Article En | MEDLINE | ID: mdl-38729920

The exploration of the complex chemical diversity of bicyclo[n.1.1]alkanes and their use as benzene bioisosteres has garnered significant attention over the past two decades. Regiodivergent syntheses of thiabicyclo[4.1.1]octanes (S-BCOs) and highly substituted bicyclo[2.1.1]hexanes (BCHs) using a Lewis acid-catalyzed formal cycloaddition of bicyclobutanes (BCBs) and 3-benzylideneindoline-2-thione derivatives have been established. The first hetero-(4+3) cycloaddition of BCBs, catalyzed by Zn(OTf)2, was achieved with a broad substrate scope under mild conditions. In contrast, the less electrophilic BCB ester undergoes a Sc(OTf)3-catalyzed [2π+2σ] reaction with 1,1,2-trisubstituted alkenes, yielding BCHs with a spirocyclic quaternary carbon center. Control experiments and preliminary theoretical calculations suggest that the diastereoselective [2π+2σ] product formation may involve a concerted cycloaddition between a zwitterionic intermediate and E-1,1,2-trisubstituted alkenes. Additionally, the hetero-(4+3) cycloaddition may involve a concerted nucleophilic ring-opening mechanism.

3.
Front Oncol ; 14: 1350043, 2024.
Article En | MEDLINE | ID: mdl-38715782

Renal cell carcinoma (RCC) is the most common renal tumor, with lung, bone, and liver being the primary sites of metastasis. Thyroid metastasis, on the other hand, is relatively uncommon. Metastatic tumors in the thyroid gland typically manifest as multiple or isolated nodules, which can be easily overlooked due to the lack of specific clinical and imaging features. However, the identification of thyroid metastasis suggests the presence of systemic metastasis and is indicative of a poor prognosis for patients. In this paper, we present two cases of thyroid metastasis following nephrectomy, with the objective of enhancing understanding among medical community regarding the diagnosis and treatment of thyroid metastasis originating from renal cell carcinoma. By raising awareness about this phenomenon, we emphasize the importance of early detection and diagnosis to improve patient prognoses. The implementation of standardized treatment protocols at the earliest possible stage is also emphasized. Through this research, we aim to contribute to the early identification and management of thyroid metastasis in patients with renal cell carcinoma, ultimately leading to improved outcomes.

4.
RSC Adv ; 14(21): 14934-14941, 2024 May 02.
Article En | MEDLINE | ID: mdl-38716098

Ferroptosis, characterized by elevated iron levels and lipid peroxidation (LPO), is a recently identified regulatory mechanism of cell death. Its substantial involvement in ischemic tissue injury, neurodegenerative disorders, and cancer positions ferroptosis inhibition as a promising strategy for managing these diverse diseases. In this study, we introduce curcumin-polydopamine nanoparticles (Cur-PDA NPs) as an innovative ferroptosis inhibitor. Cur-PDA NPs demonstrate remarkable efficacy in chelating both Fe2+ and Fe3+in vitro along with scavenging free radicals. Cur-PDA NPs were found to efficiently mitigate reactive oxygen species, reduce Fe2+ accumulation, suppress LPO, and rejuvenate mitochondrial function in PC12 cells. Thus, these NPs can act as potent therapeutic agents against ferroptosis, primarily via iron chelation and reduction of oxidative stress.

5.
Phytomedicine ; 129: 155683, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38701543

BACKGROUND: Peritoneal dialysis (PD) is a successful renal replacement therapy for end-stage renal disease. Long-term PD causes mesothelial-mesenchymal transition (MMT) of peritoneal mesothelial cells (PMCs), leading to peritoneal fibrosis (PF), which reduces the efficiency of PD. Macrophages are thought to play a role in the onset and perpetuation of peritoneal injury. However, the mechanisms by which macrophages-PMCs communication regulates peritoneal fibrosis are not fully understood resulting in a lack of disease-modifying drugs. Astragaloside IV (AS-IV) possessed anti-fibrotic effect towards PF in PD whereas the mechanistic effect of AS-IV in PD is unknown. METHODS: The primary macrophages were extracted and treated with LPS or AS-IV, then co-cultured with primary PMCs in transwell plates. The macrophage-derived exosomes were extracted and purified by differential centrifugation, then co-cultured with primary PMCs. Small RNA-seq was used to detect differential miRNAs in exosomes, and then KEGG analysis and q-PCR were performed for validation. In vivo PD rat models were established by inducing with high-glucose peritoneal dialysis fluid and different concentrations of AS-IV and exosomes were intraperitoneal injection. Through qRT-PCR, western blotting, and luciferase reporting, candidate proteins and pathways were validated in vivo and in vitro. The functions of the validated pathways were further investigated using the mimic or inhibition strategy. PF and inflammatory situations were assessed. RESULTS: We found AS-IV reversed the MMT of PMCs caused by LPS-stimulated macrophages and the improving effect was mediated by macrophage-derived exosomes in vitro. We also demonstrated that AS-IV significantly reduced the MMT of PMCs in vitro or PF in a rat PD model via regulating exosome-contained miR-204-5p which targets Foxc1/ß-catenin signaling pathway. CONCLUSION: AS-IV attenuates macrophage-derived exosomes induced fibrosis in PD through the miR-204-5p/Foxc1 pathway.

6.
J Org Chem ; 2024 May 02.
Article En | MEDLINE | ID: mdl-38696309

Here we report a carbene-catalyzed enantio- and diastereoselective [4+2] cycloaddition reaction of cyclobutenones with isatins for the quick and efficient synthesis of spirocyclic δ-lactones bearing a chiral chlorine. A broad range of substrates with various substitution patterns proceed smoothly in this reaction, with the spirooxindole δ-lactone products afforded in generally good to excellent yields and optical purities under mild reaction conditions.

7.
Adv Mater ; : e2311489, 2024 May 02.
Article En | MEDLINE | ID: mdl-38696759

Slippery surfaces, which originate in nature with special wettability, have drawn a great deal of attention for both fundamental research and practical applications in a variety of fields due to their unique characteristics of super-low liquid friction and adhesion. Although the research of bioinspired slippery surfaces is in its infancy, it is a rapidly growing and enormously promising field. Herein, we present a systematic review of recent progress in bioinspired slippery surfaces, beginning with a brief introduction of several typical creatures with slippery property in nature. Subsequently, a detailed discussion the basic concepts of the wetting, friction and drag from micro and macro aspects and focus on the underlying slippery mechanism. We next summarize state-of-the-art developments of the three categories of slippery surfaces of air-trapped, liquid-infused and liquid-like slippery surfaces, including materials, design principles and preparation methods of slippery surfaces and highlight the emerging applications. Finally, the current challenges and future prospects of various slippery surfaces are addressed. This article is protected by copyright. All rights reserved.

8.
Regen Biomater ; 11: rbae036, 2024.
Article En | MEDLINE | ID: mdl-38628547

Immune checkpoint blockade therapy provides a new strategy for tumor treatment; however, the insufficient infiltration of cytotoxic T cells and immunosuppression in tumor microenvironment lead to unsatisfied effects. Herein, we reported a lipid/PLGA nanocomplex (RDCM) co-loaded with the photosensitizer Ce6 and the indoleamine 2,3-dioxygenase (IDO) inhibitor 1MT to improve immunotherapy of colon cancer. Arginine-glycine-aspartic acid (RGD) as the targeting moiety was conjugated on 1,2-distearoyl-snglycero-3-phosphoethanolamine lipid via polyethylene glycol (PEG), and programmed cell death-ligand 1 (PD-L1) peptide inhibitor DPPA (sequence: CPLGVRGK-GGG-d(NYSKPTDRQYHF)) was immobilized on the terminal group of PEG via matrix metalloproteinase 2 sensitive peptide linker. The Ce6 and 1MT were encapsulated in PLGA nanoparticles. The drug loaded nanoparticles were composited with RGD and DPPA modified lipid and lecithin to form lipid/PLGA nanocomplexes. When the nanocomplexes were delivered to tumor, DPPA was released by the cleavage of a matrix metalloproteinase 2-sensitive peptide linker for PD-L1 binding. RGD facilitated the cellular internalization of nanocomplexes via avß3 integrin. Strong immunogenic cell death was induced by 1O2 generated from Ce6 irradiation under 660 nm laser. 1MT inhibited the activity of IDO and reduced the inhibition of cytotoxic T cells caused by kynurenine accumulation in the tumor microenvironment. The RDCM facilitated the maturation of dendritic cells, inhibited the activity of IDO, and markedly recruited the proportion of tumor-infiltrating cytotoxic T cells in CT26 tumor-bearing mice, triggering a robust immunological memory effect, thus effectively preventing tumor metastasis. The results indicated that the RDCM with dual IDO and PD-L1 inhibition effects is a promising platform for targeted photoimmunotherapy of colon cancer.

9.
Autophagy ; : 1-21, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38686804

Obesity is one of the most common metabolic diseases around the world, which is distinguished by the abnormal buildup of triglycerides within adipose cells. Recent research has revealed that autophagy regulates lipid mobilization to maintain energy balance. TIGAR (Trp53 induced glycolysis regulatory phosphatase) has been identified as a glycolysis inhibitor, whether it plays a role in the metabolism of lipids is unknown. Here, we found that TIGAR transgenic (TIGAR+/+) mice exhibited increased fat mass and trended to obesity phenotype. Non-target metabolomics showed that TIGAR caused the dysregulation of the metabolism profile. The quantitative transcriptome sequencing identified an increased levels of LRRK2 and RAB7B in the adipose tissue of TIGAR+/+ mice. It was confirmed in vitro that TIGAR overexpression increased the levels of LRRK2 by inhibiting polyubiquitination degradation, thereby suppressing macroautophagy and chaperone-mediated autophagy (CMA) while increasing lipid accumulation which were reversed by the LRRK2 inhibitor DNL201. Furthermore, TIGAR drove LRRK2 to interact with RAB7B for suppressing lysosomal degradation of lipid droplets, while the increased lipid droplets in adipocytes were blocked by the RAB7B inhibitor ML282. Additionally, fat-specific TIGAR knockdown of TIGAR+/+ mice alleviated the symptoms of obesity, and adipose tissues-targeting superiority DNL201 nano-emulsion counteracted the obesity phenotype in TIGAR+/+ mice. In summary, the current results indicated that TIGAR performed a vital function in the lipid metabolism through LRRK2-mediated negative regulation of macroautophagy and CMA in adipocyte. The findings suggest that TIGAR has the potential to serve as a viable therapeutic target for treating obesity and its associated metabolic dysfunction.

10.
Sci Transl Med ; 16(741): eadj5705, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38569015

Cancer-associated fibroblasts (CAFs) are abundant stromal cells in the tumor microenvironment that promote cancer progression and relapse. However, the heterogeneity and regulatory roles of CAFs underlying chemoresistance remain largely unclear. Here, we performed a single-cell analysis using high-dimensional flow cytometry analysis and identified a distinct senescence-like tetraspanin-8 (TSPAN8)+ myofibroblastic CAF (myCAF) subset, which is correlated with therapeutic resistance and poor survival in multiple cohorts of patients with breast cancer (BC). TSPAN8+ myCAFs potentiate the stemness of the surrounding BC cells through secretion of senescence-associated secretory phenotype (SASP)-related factors IL-6 and IL-8 to counteract chemotherapy. NAD-dependent protein deacetylase sirtuin 6 (SIRT6) reduction was responsible for the senescence-like phenotype and tumor-promoting role of TSPAN8+ myCAFs. Mechanistically, TSPAN8 promoted the phosphorylation of ubiquitin E3 ligase retinoblastoma binding protein 6 (RBBP6) at Ser772 by recruiting MAPK11, thereby inducing SIRT6 protein destruction. In turn, SIRT6 down-regulation up-regulated GLS1 and PYCR1, which caused TSPAN8+ myCAFs to secrete aspartate and proline, and therefore proved a nutritional niche to support BC outgrowth. By demonstrating that TSPAN8+SIRT6low myCAFs were tightly associated with unfavorable disease outcomes, we proposed that the combined regimen of anti-TSPAN8 antibody and SIRT6 activator MDL-800 is a promising approach to overcome chemoresistance. These findings highlight that senescence contributes to CAF heterogeneity and chemoresistance and suggest that targeting TSPAN8+ myCAFs is a promising approach to circumvent chemoresistance.


Breast Neoplasms , Cancer-Associated Fibroblasts , Sirtuins , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Drug Resistance, Neoplasm , Neoplasm Recurrence, Local/pathology , Fibroblasts/pathology , Tumor Microenvironment , DNA-Binding Proteins , Ubiquitin-Protein Ligases , Tetraspanins/genetics , Tetraspanins/metabolism
11.
Front Immunol ; 15: 1354578, 2024.
Article En | MEDLINE | ID: mdl-38566985

Acute generalized pustular psoriasis (GPP) is a serious illness. Despite various treatment methods, there is still lack of effective treatment plans for refractory cases with multiple comorbidities. This case report presents a 67-year-old woman with acute GPP, stage 4 chronic kidney disease (CKD), type 2 diabetes, and cardiovascular disease, in whom skin symptom disappearance and kidney function improvement were observed after the use of oral tacrolimus as the sole therapy. This is the first report on the application of tacrolimus in the treatment of acute GPP, especially refractory acute GPP. The successful treatment indicates that there are shared immune pathways between acute GPP and CKD, and the pathways can be interdicted by tacrolimus. Further studies are needed to optimize the therapy to maximize efficacy and minimize toxicity.


Diabetes Mellitus, Type 2 , Psoriasis , Renal Insufficiency, Chronic , Female , Humans , Aged , Tacrolimus/therapeutic use , Interleukins , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Psoriasis/complications , Psoriasis/diagnosis , Psoriasis/drug therapy , Chronic Disease , Acute Disease , Renal Insufficiency, Chronic/complications
12.
Chem Soc Rev ; 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38595056

Batteries play a pivotal role in various electrochemical energy storage systems, functioning as essential components to enhance energy utilization efficiency and expedite the realization of energy and environmental sustainability. Zn-based batteries have attracted increasing attention as a promising alternative to lithium-ion batteries owing to their cost effectiveness, enhanced intrinsic safety, and favorable electrochemical performance. In this context, substantial endeavors have been dedicated to crafting and advancing high-performance Zn-based batteries. However, some challenges, including limited discharging capacity, low operating voltage, low energy density, short cycle life, and complicated energy storage mechanism, need to be addressed in order to render large-scale practical applications. In this review, we comprehensively present recent advances in designing high-performance Zn-based batteries and in elucidating energy storage mechanisms. First, various redox mechanisms in Zn-based batteries are systematically summarized, including insertion-type, conversion-type, coordination-type, and catalysis-type mechanisms. Subsequently, the design strategies aiming at enhancing the electrochemical performance of Zn-based batteries are underscored, focusing on several aspects, including output voltage, capacity, energy density, and cycle life. Finally, challenges and future prospects of Zn-based batteries are discussed.

13.
J Med Chem ; 67(9): 7330-7358, 2024 May 09.
Article En | MEDLINE | ID: mdl-38661655

The aberrant activation of the PI3K/mTOR signaling pathway is implicated in various human cancers. Thus, the development of inhibitors targeting mTOR has attracted considerable attention. In this study, we used a structure-based drug design strategy to discover a highly potent and kinase-selective mTOR inhibitor 24 (PT-88), which demonstrated an mTOR inhibitory IC50 value of 1.2 nM without obvious inhibition against another 195 kinases from the kinase profiling screening. PT-88 displayed selective inhibition against MCF-7 cells (IC50: 0.74 µM) with high biosafety against normal cells, in which autophagy induced by mTOR inhibition was implicated. After successful encapsulation in a lipodisc formulation, PT-88 demonstrated favorable pharmacokinetic and biosafety profiles and exerted a large antitumor effect in an MCF-7 subcutaneous bearing nude mice model. Our study shows the discovery of a highly selective mTOR inhibitor using a structure-based drug discovery strategy and provides a promising antitumor candidate for future study and development.


Antineoplastic Agents , Breast Neoplasms , Drug Design , MTOR Inhibitors , Mice, Nude , TOR Serine-Threonine Kinases , Triazines , Humans , Animals , Triazines/chemical synthesis , Triazines/pharmacology , Triazines/chemistry , Triazines/pharmacokinetics , Triazines/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Female , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Mice , MTOR Inhibitors/pharmacology , MTOR Inhibitors/chemical synthesis , MTOR Inhibitors/therapeutic use , MTOR Inhibitors/chemistry , Structure-Activity Relationship , MCF-7 Cells , Cell Proliferation/drug effects , Xenograft Model Antitumor Assays , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacokinetics , Mice, Inbred BALB C , Autophagy/drug effects
14.
J Cancer Res Clin Oncol ; 150(5): 222, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38687350

PURPOSE: The purpose of this research was to investigate the efficacy of the CT-based peritoneal cancer index (PCI) to predict the overall survival of patients with peritoneal metastasis in gastric cancer (GCPM) after two cycles of chemotherapy. METHODS: This retrospective study registered 112 individuals with peritoneal metastasis in gastric cancer in our hospital. Abdominal and pelvic enhanced CT before and after chemotherapy was independently analyzed by two radiologists. The PCI of peritoneal metastasis in gastric cancer was evaluated according to the Sugarbaker classification, considering the size and distribution of the lesions using CT. Then we evaluated the prognostic performance of PCI based on CT, clinical characteristics, and imaging findings for survival analysis using multivariate Cox proportional hazard regression. RESULTS: The PCI change ratio based on CT after treatment (ΔPCI), therapy lines, and change in grade of ascites were independent factors that were associated with overall survival (OS). The area under the curve (AUC) value of ΔPCI for predicting OS with 0.773 was higher than that of RECIST 1.1 with 0.661 (P < 0.05). Patients with ΔPCI less than -15% had significantly longer OS. CONCLUSION: CT analysis after chemotherapy could predict OS in patients with GCPM. The CT-PCI change ratio could contribute to the determination of an appropriate strategy for gastric cancer patients with peritoneal metastasis.


Peritoneal Neoplasms , Stomach Neoplasms , Tomography, X-Ray Computed , Humans , Stomach Neoplasms/pathology , Stomach Neoplasms/mortality , Stomach Neoplasms/drug therapy , Stomach Neoplasms/diagnostic imaging , Peritoneal Neoplasms/secondary , Peritoneal Neoplasms/mortality , Peritoneal Neoplasms/drug therapy , Peritoneal Neoplasms/diagnostic imaging , Female , Male , Middle Aged , Retrospective Studies , Tomography, X-Ray Computed/methods , Aged , Prognosis , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
15.
Nature ; 629(8010): 67-73, 2024 May.
Article En | MEDLINE | ID: mdl-38632409

It is well established that near-field radiative heat transfer (NFRHT) can exceed Planck's blackbody limit1 by orders of magnitude owing to the tunnelling of evanescent electromagnetic frustrated and surface modes2-4, as has been demonstrated experimentally for NFRHT between two large parallel surfaces5-7 and between two subwavelength membranes8,9. However, although nanostructures can also sustain a much richer variety of localized electromagnetic modes at their corners and edges10,11, the contributions of such additional modes to further enhancing NFRHT remain unexplored. Here we demonstrate both theoretically and experimentally a physical mechanism of NFRHT mediated by the corner and edge modes, and show that it can dominate the NFRHT in the 'dual nanoscale regime' in which both the thickness of the emitter and receiver, and their gap spacing, are much smaller than the thermal photon wavelengths. For two coplanar 20-nm-thick silicon carbide membranes separated by a 100-nm vacuum gap, the NFRHT coefficient at room temperature is both predicted and measured to be 830 W m-2 K-1, which is 5.5 times larger than that for two infinite silicon carbide surfaces separated by the same gap, and 1,400 times larger than the corresponding blackbody limit accounting for the geometric view factor between two coplanar membranes. This enhancement is dominated by the electromagnetic corner and edge modes, which account for 81% of the NFRHT between the silicon carbide membranes. These findings are important for future NFRHT applications in thermal management and energy conversion.

16.
Int J Biol Macromol ; 269(Pt 2): 131876, 2024 Apr 27.
Article En | MEDLINE | ID: mdl-38685543

Buccal mucosa administration is a promising method for insulin (INS) delivery with good compliance. However, buccal mucosa delivery systems still face challenges of long-term mucosal adhesion, sustained drug release, and mucosal drug penetration. To address these issues, a double-layer film consisting of a hydroxypropyl methylcellulose/polyacrylic acid interpolymer complex (IPC)-formulated mucoadhesive layer and an ethylcellulose (EC)-formulated waterproof backing layer (IPC/EC film) was designed. Protamine (PTM) and INS were co-loaded in the mucoadhesive layer of the IPC/EC film (PTM-INS-IPC/EC film). In ex vivo studies with porcine buccal mucosa, this film exhibited robust adhesion, with an adhesion force of 120.2 ±â€¯20.3 N/m2 and an adhesion duration of 491 ±â€¯45 min. PTM has been shown to facilitate INS mucosal transfer. Pharmacokinetic studies indicated that the PTM-INS-IPC/EC film significantly improved the absorption of INS, exhibiting a 1.45 and 2.24-fold increase in the area under the concentration-time curve (AUC0-∞) compared to the INS-IPC/EC film and free INS, respectively. Moreover, the PTM-INS-IPC/EC film effectively stabilized the blood glucose levels of type 1 diabetes mellitus (T1DM) rats with post oral glucose administration, maintaining lower glucose levels for approximately 8 h. Hence, the PTM-INS-IPC/EC film provides a promising noninvasive INS delivery system for diabetes treatment.

17.
J Appl Gerontol ; : 7334648241236237, 2024 Mar 29.
Article En | MEDLINE | ID: mdl-38553848

Home- and community-based services (HCBS) are optimal ways to deal with disability problems among older adults. This study aims to analyze urban-rural disparities in the relationship between HCBS utilization and levels of disability among Chinese older adults with disabilities, so as to meet the long-term care needs of them. In applying the Andersen Behavioral Model, bivariate analysis and multivariate regression models were employed using data from 843 older adults with disabilities from the 2018 China Longitudinal Aging Social Survey (CLASS). After adjusting covariates, disability levels among Chinese older adults with disabilities were significantly correlated with HCBS utilization in urban areas but not in rural areas. The urban-rural disparities may be due to the low utilization of HCBS in rural areas (only 11.2%) among older adults with disabilities compared with their urban counterparts (22.7%).

18.
Cancer Res ; 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38536119

The widespread use of androgen receptor (AR) signaling inhibitors has led to an increased incidence of AR-negative castration-resistant prostate cancer (CRPC), limiting effective treatment and patient survival. A more comprehensive understanding of the molecular mechanisms supporting AR-negative CRPC could reveal therapeutic vulnerabilities to improve treatment. This study showed that the transcription factor nuclear factor I/B (NFIB) was upregulated in AR-negative CRPC patient tumors and cell lines and was positively associated with an epithelial-to-mesenchymal transition (EMT) phenotype. Loss of NFIB inhibited EMT and reduced migration of CRPC cells. NFIB directly bound to gene promoters and regulated the transcription of EMT-related factors E-cadherin and vimentin, independently of other typical EMT-related transcriptional factors. In vivo data further supported the positive role of NFIB in the metastasis of AR-negative CRPC cells. Moreover, N6-methyladenosine (m6A) modification induced NFIB upregulation in AR-negative CRPC. Mechanistically, the m6A levels of mRNA, including NFIB and its E3 ubiquitin ligase TRIM8, were increased in AR-negative CRPC cells. Elevated m6A methylation of NFIB mRNA recruited YTHDF2 to increase mRNA stability and protein expression. Inversely, the m6A modification of TRIM8 mRNA, induced by ALKBH5 downregulation, decreased its translation and expression, which further promoted NFIB protein stability. Overall, this study reveals that upregulation of NFIB, mediated by m6A modification, triggers EMT and metastasis in AR-negative CRPC. Targeting the m6A/NFIB axis is a potential prevention and treatment strategy for AR-negative CRPC metastasis.

19.
Front Surg ; 11: 1309202, 2024.
Article En | MEDLINE | ID: mdl-38533092

Objective: To investigate the clinical characteristics and outcomes of three patients with symptomatic Spinal epidural lipomatosis (SEL) treated using Unilateral Biportal Endoscopic (UBE) surgery. Methods: This report retrospectively analyzed the clinical data of three patients with SEL admitted to our hospital. The analysis covers onset characteristics, clinical manifestations, and the most recent radiologic grading system of neural compression (Manjila classification). Furthermore, it details the decompression accomplished through the application of a minimally invasive UBE surgical technique, specifically targeting the removal of proliferated fat responsible for nerve and spinal cord compression. Results: This technique was performed successfully in 3 patients with SEL. Radiating pain was reduced, and the functional disability and radiologic compression were improved in all three patients. Postoperative spinal instability and surgical complications related to the procedure were not observed. Conclusions: For SEL, timely diagnosis and appropriate intervention can prevent the progression of neurological disability. UBE is a minimally invasive muscle-preserving technique that achieves neural decompression directly by the removal of excessive intraspinal adipose tissue buildup.

20.
J Affect Disord ; 355: 355-362, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38554881

BACKGROUND: An association between insulin resistance (IR) and depression has been identified in recent years. The purpose of this study was to examine the relationship between IR and depression in the general population. METHODS: The population for this cross-sectional study consisted of adults participating in the National Health and Nutrition Examination Survey (NHANES) between 2005 and 2018. Insulin sensitivity was assessed using the Metabolic Score for IR (METS-IR) index, while depression was evaluated using the Patient Health Questionnaire (PHQ)-9. Logistic regression analyses, subgroup analyses, and dose-response curves were conducted to assess the association between the METS-IR index and depression. RESULTS: A total of 13,157 adults aged over 20 years were included in this study. After adjusting for potential confounders, it was observed that each unit increase in the METS-IR index was associated with a 1.1 percentage point increase in the prevalence of depression (OR = 1.011; 95 % CI: 1.008, 1.014). Patients in the 4th quartile of the METS-IR index had a higher likelihood of depression compared to those in the 1st quartile (OR = 1.386, 95 % CI: 1.239, 1.549). Stratified analyses demonstrated consistent results in all subgroups, except for men, patients under 40 years of age, and those with a history of cancer. Dose-response curves indicated a nonlinear relationship between the METS-IR index and the risk of depression, with an inflection point value of 32.443 according to threshold effect analysis. CONCLUSIONS: Our findings suggest that higher METS-IR scores are associated with an increased likelihood of experiencing depressive symptoms among U.S. adults.


Insulin Resistance , Metabolic Syndrome , Adult , Male , Humans , Metabolic Syndrome/epidemiology , Nutrition Surveys , Depression/epidemiology , Cross-Sectional Studies
...